Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121687, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35940066

RESUMO

The present contribution depicts a unique approach to generate tunable Förster resonance energy transfer (FRET) emission with variation of pH of the medium. The pH sensitive absorption of Doxorubicin leads to modification of spectral overlap between emission spectra of donor (Pyrazoline) and absorption spectra of acceptor (Doxorubicin) thereby sensing maximum FRET efficiency in an optimum pH (near pKa of Doxorubicin). This drug molecule exhibits an instantaneous conformation change at a particular pH, which consequences on abrupt ON-and-OFF FRET efficiency. At elevated pH, both the drug molecules exhibit conformational change and form stable fluorescent exciplex, switching off the FRET emission. Confocal fluorescence images of live HepG2 cells imply that the sensor can proficiently go through the cell membrane and can be applied in the controlled delivery of drug to the tumor cell lines.


Assuntos
Doxorrubicina , Transferência Ressonante de Energia de Fluorescência , Doxorrubicina/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
3.
Biomater Sci ; 8(17): 4665-4691, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32760957

RESUMO

Polymers have a major role in the controlled delivery of pharmaceutical compounds to a targeted portion of the body. In this quest, a high priority research area is the targeted delivery of ophthalmic drugs to the interior regions of the eyes. Due to their complex anatomical/biochemical nature. This necessitates an advanced drug delivery cargo that could administer a therapeutic agent to the targeted location by evading various obstacles. The ongoing focus is to design an ophthalmic formulation by coupling it with a smart in situ forming polymeric hydrogel. These smart macromolecules have an array of unique theranostic properties and can utilize the in vivo biological parameters as a stimulus to change their macromolecular state from liquid to gel. The fast gelling hydrogel improves the corneal contact time, facilitates sustained drug release, resists the burst-out effect, and assists drug permeability to anterior regions. This review summarizes the rationale, scientific objectives, properties, and classification of the biologically important in situ hydrogels in the niche of ophthalmic drug delivery. The current trends and prospectives of the array of stimulus-responsive polymers, copolymers, and nanomaterials are discussed broadly. The crucial biointerfacial attributes with pros and cons are reviewed by investigating the effect of the nature of polymers as well as the ratio/percentage of additives and copolymers that influence the overall performance.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Excipientes , Polímeros
4.
J Environ Sci (China) ; 82: 57-69, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133270

RESUMO

To improve the interfacial affinity and antifouling properties of polyphenylsulfone (PPSU) membrane, nano CuO/g-C3N4 (g-CN) sheets were synthesized via facile calcination route as one pot synthesis method. The uniformly assembled nanohybrid fillers, CuO on g-CN sheets were confirmed by using XRD, TEM, EDX and FTIR analysis. The non-solvent induced phase inversion technique was used to fabricate the nanohybrid ultrafiltration (UF) membranes by doping different concentration (0.5-1 wt.%) of nano CuO/g-C3N4 (g-CN) sheets within the PPSU matrix. The results of contact angle, atomic force microscopy, energy-dispersive X-ray spectroscopy reveal that surface structure and physico-chemical properties of nanohybrid membrane plays lead role in solute interaction and rejection compared to bare membrane, M0. Furthermore, the interfacial affinity of membrane was explored in detail via surface free energy, spreading coefficient, wetting tension and reversible work of adhesion analysis. Nanohybrid UF membrane, with 0.5% of the filler (M1) displayed remarkable permeation flux of 202, 131 L/m2/hr for pure water and protein solution, respectively while maintaining a high protein rejection (96%). Moreover, the exceptional dispersion of the nanosheets in the polymer matrix enhanced FRR (79%) and decreased the overall resistance of M1 compared to the pristine membrane (M0). Overall results suggest that the incorporation of nano sheets is a facile modification technique which improves the comprehensive membrane performance and holds a great potential to be further explored for water treatment.


Assuntos
Ultrafiltração/métodos , Purificação da Água/métodos , Cobre/química , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanocompostos/química , Nitrilas/química , Polímeros/química
5.
Sci Total Environ ; 674: 355-362, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31005837

RESUMO

The purification process of wastewater containing heavy metal ions (HMIs) using nano-fibrous metal-organic frameworks, MOF-808, embedded polyacrylonitrile membrane has been studied. The process parameters that were evaluated included feed concentration, transmembrane pressure (TMP), and membrane thickness. The effect of coexisting cations in the solution upon the removal efficiencies of Zn2+, Cd2+, Pb2+ and Hg2+ ions was also investigated. Results from the filtration experiments indicate a substantial variation in the feed volume that the membrane can treat before the permeate lead concentration reaches the allowable limit of 10 ppb, depending on the process parameter. An increase in the membrane thickness showed a significant improvement (26%) with 440 L of the treated feed volume after doubling the membrane layer. An increase in TMP could reduce the treated feed volume by 38% while a decrease in feed concentration led to a 21% increase in the treated feed volume. In the presence of other common background cations in the solution, the removal efficiency of HMIs by adsorption onto MOF-808 dropped by 18 to 37%. This result was dependent upon the HMIs, in the presence of up to three other cations but was minimal in the presence of a single cation indicative of good selectivity.

6.
Mater Sci Eng C Mater Biol Appl ; 99: 696-709, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889743

RESUMO

A green, efficient synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites (RGO/CdO) was prepared by one-step co-precipitation and hydrothermal method. Crystalline nature of the nanocomposites was characterized by X-ray diffraction analysis. To evaluate the structural morphology and particle size, high resolution transmission electron microscopy were used. X-ray photoelectron spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy techniques were employed to establish chemical structure of the nanocomposites and Atomic Force Microscopy was done to measure the thickness. The optical properties were evaluated by UV-visible absorption spectroscopy. Thermo-gravimetric analysis, BET surface area and zeta potential measurements were carried out to study the thermal and surface characteristics. The CdO nano-particles (NPs) decorated on RGO sheets exhibit better electrical conductivity compared to RGO. The antibacterial activity of the nanocomposites has also been monitored in different culture media imparting good potentiality than RGO.


Assuntos
Antibacterianos/farmacologia , Compostos de Cádmio/farmacologia , Eletricidade , Grafite/farmacologia , Química Verde/métodos , Nanocompostos/química , Óxidos/farmacologia , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Eletricidade Estática , Temperatura , Difração de Raios X
7.
Carbohydr Polym ; 208: 504-512, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658830

RESUMO

Chitosan based proton exchange membranes (PEMs) has been synthesized by a facile solution casting strategy using two-dimensional exfoliated molybdenum disulfide (E-MoS2) nanosheets. The prepared PEMs are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field-emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDX), water uptake, Thermogravimetric analysis (TGA), AC impedance spectroscopy and cyclic voltammetry. In comparison with pure chitosan membrane, E-MoS2 nanosheets incorporated membranes exhibit excellent water absorbing capacity, ion-exchange capacity and proton conductivity. Moreover, the changes in roughness of nanocomposite membranes is investigated by atomic force microscopy (AFM) and the results confirm that the E-MoS2 nanosheets content enhances the surface roughness as well as provide good mechanical and thermal resistivity to the chitosan/E-MoS2 membranes. Chitosan membranes with 0.75% E-MoS2 nanosheets demonstrated higher proton conductivity of 2.92 × 10-3 Scm-1 and membrane selectivity of 8.9 × 104 Scm-3 s with reduced methanol permeability of 3.28 × 10-8 cm2 s-1. Overall, results evidenced that the chitosan/E-MoS2 nanocomposite membranes will be an alternate to Nafion in direct methanol fuel cells (DMFCs).

8.
RSC Adv ; 9(71): 41462-41474, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35541587

RESUMO

In this research work, novel perfluorooctanoic acid-modified melamine (PFOM) was synthesized as a hydrophobic filler using a facile one-pot synthesis. PFOM incorporating polyvinylidene fluoride (PVDF) solution was cast on a cellulose sheet to prepare a dual-layered membrane employing the phase-inversion technique for direct contact membrane distillation (DCMD) application. The influence of PFOM to tailor the dual-layered membrane performance was then investigated. The long perfluoro chain in PFOM hydrophobic fillers increased the surface roughness of the membranes due to its random overlapping with PVDF backbone, and these membranes exhibited a higher water contact angle value. The increase in pore size and membrane porosity did not significantly influence the liquid entry pressure of water (LEPw). The microporous membranes displayed good mechanical strength for use in the test setup. Pure water permeation was the highest (6.9 kg m-2 h-1) for membrane (M1) with 1 wt% of PFOM when tested with a simulated sea-water solution (3.5% w/v NaCl) in the direct contact distillation mode. These membranes also achieved the theoretical salt-rejection of 99.9%, thus confirming the potential of these membranes to be investigated for large scale membrane distillation (MD) applications like desalination of seawater.

9.
ACS Appl Mater Interfaces ; 10(22): 18619-18629, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29763287

RESUMO

Electrospun nanofiber composite membranes containing water-stable metal-organic frameworks (MOFs) particles (Zr-based MOF-808) supported on polyacrylonitrile (PAN) nanofiber synthesized via co-electrospinning have been prepared. MOF particles were dispersed in the organic polymer, and their subsequent presence was inferred by scanning electron microscopy. Membrane performance in heavy metal ion adsorption in batch filtration was evaluated on the basis of Cd2+ and Zn2+ ions sequestration. The adsorption capacities of the pristine MOF and the MOF composite membrane revealed that MOF particles in the membrane could be accessed for adsorption in the hydrophilic PAN membranes. The maximum adsorption capacities were 225.05 and 287.06 mg g-1 for Cd2+ and Zn2+, respectively. Conventional thermal activation of pristine MOF and composite membrane revealed a crystal downsizing, while "hydractivation" produced an expanded MOF with enhanced adsorption potentials. The PAN/MOF-808 "hydractivated" composite membrane could treat 580 mL of Cd, whereas the conventional vacuum-activated composite treated 464 mL. The high separation performance and reusability of the membranes and the outstanding water stability of the MOFs suggested the developed membrane as a potential candidate for water treatment.

10.
Nanoscale ; 10(21): 9917-9934, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29770422

RESUMO

A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

11.
Int J Biol Macromol ; 116: 1037-1048, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29772341

RESUMO

In this work, we report the development of a cross-linked bio-composite consisting of graphene oxide, potato starch, cross-linker glutaraldehyde and its application to adsorption of the industrial dye, methylene blue, from aqueous solution. The inexpensiveness, non-hazardous nature and easy bio-degradability are the major reasons for the selection of starch material as one of the components of the bio-composite. The bio-composite has been characterized by FTIR, SEM, XRD, particle size and zeta potential analysis. The FTIR analysis reveals the nature of the binding sites and surface morphology of the bio-composite can be understood through SEM. The auto-phase separability of the adsorbent i.e., the precipitation of the adsorbent without any mechanical means is another factor which makes this particular material very attractive as an adsorbent. Parameters like adsorbent dosage, pH, temperature, rotation speed and salt concentration have been varied to find out the suitable dye adsorption conditions. Furthermore, the time dependence of adsorption process has been analyzed using pseudo-first and pseudo-second order kinetics. The adsorption isotherms have been constructed to suggest convincing mechanistic pathway for this adsorption process. Finally, desorption studies have been successfully performed in 3 cycles, establishing the reusability of the material, which should allow the adsorbent to be economically promising for practical application in wastewater treatment.


Assuntos
Grafite/química , Azul de Metileno/química , Solanum tuberosum/química , Amido/química , Águas Residuárias/química , Purificação da Água/métodos , Adsorção
12.
ACS Appl Mater Interfaces ; 10(13): 11251-11260, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517221

RESUMO

Among other applications, metal-organic frameworks (MOFs) are slowly gaining grounds as fillers for desalination composite membranes. In this study, superhydrophobic poly(vinylidene fluoride) nanofibrous membranes were fabricated with MOF (iron 1,3,5-benzenetricarboxylate) loading of up to 5 wt % via electrospinning on a nonwoven substrate. To improve the attachment of nanofibers onto the substrate, a substrate pretreatment method called "solvent basing" was employed. The iron content in the nanofiber, measured by energy-dispersive X-ray spectroscopy, increased proportionally with the increase of the MOF concentration in the spinning dope, indicating a uniform distribution of MOF in the nanofiber. The water contact angle increased up to 138.06 ± 2.18° upon the incorporation of 5 wt % MOF, and a liquid entry pressure of 82.73 kPa could be maintained, making the membrane useful for direct contact membrane distillation experiments. The membrane was stable for the entire operating period of 5 h, exhibiting 2.87 kg/m2·h of water vapor flux and 99.99% NaCl (35 g/L) rejection when the feed and permeate temperature were 48 and 16 °C, respectively. Immobilization of MOF on nanofibers with the enhanced attachment was proven by inductively coupled mass spectrometry analysis, by which no Fe2+ could be found in the permeate to the detection limit of ppt.

13.
Carbohydr Polym ; 188: 168-180, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29525153

RESUMO

Non-toxic nanocomposites based bio-films obtained from methylcellulose (MC) can reduce environmental problems associated with synthetic polymers. A new facile route for the isolation of cellulose nano-crystals (CNC) from jute waste is successfully utilized here. The fabrication of CNC reinforced MC nanocomposites by film casting technique and the studies of the effect of CNC on the properties of the MC based nanocomposites have been reported. The synthesized nanocomposites have shown improved UV resistance, mechanical, barrier, and thermal properties. FTIR results established the physicochemical compatibility between the drug, MC and CNC in nanocomposites. In vitro permeation studies performed by using Franz diffusion cell revealed diffusion mediated sustained drug release from the devices due to the presence of interaction between MC and CNC through H-bonding, electrostatic interaction between the hydrophilic polymer/CNC chains with the drug and the formation of tortuous path. The nanocomposites can be used for edible packaging and transdermal drug delivery.


Assuntos
Celulose/química , Cetorolaco de Trometamina/química , Metilcelulose/química , Nanocompostos/química , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Carbohydr Polym ; 187: 8-18, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486847

RESUMO

Active packaging is one of the interesting concepts in food industry which extend the shelf-life of the food products. The purpose of this work was to develop nontoxic antimicrobial nanocomposite films. Benzyltrimethylammonium chloride modified montmorillonite (BMMT) were used as nano-filler and the prepared BMMT was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis. Polyethylene glycol (PEG) plasticized cellulose acetate butyrate (CAB) films with different ratios of PEG and CAB was prepared and it was found that the 20 wt% PEG in CAB matrix (CBP20) gave optimal results in terms of mechanical properties. BMMT was mixed with CBP20 in different proportions to prepare nanocomposites. 3 wt% BMMT loaded nanocomposite gave best in terms of the barrier and mechanical properties. The storage modulus, thermal stability, glass transition, and melting temperature of the nanocomposites increased with the loading of 1, 3, and 5 wt% of BMMT. Furthermore, these nanocomposites showed nontoxic and antimicrobial behavior.

15.
Mol Pharm ; 15(2): 679-694, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29298488

RESUMO

Two major problems in chemotherapy, poor bioavailability of hydrophobic anticancer drug and its adverse side effects causing nausea, are taken into account by developing a sustained drug release vehicle along with enhanced bioavailability using two-dimensional layered double hydroxides (LDHs) with appropriate surface charge and its subsequent embedment in polymer matrix. A model hydrophobic anticancer drug, raloxifene hydrochloride (RH), is intercalated into a series of zinc iron LDHs with varying anion charge densities using an ion exchange technique. To achieve significant sustained delivery, drug-intercalated LDH is embedded in poly(ε-caprolactone) (PCL) matrix to develop intravenous administration and to improve the therapeutic index of the drug. The cause of sustained release is visualized from the strong interaction between LDH and drug, as measured through spectroscopic techniques, like X-ray photoelectron spectroscopy, infrared, UV-visible spectroscopy, and thermal measurement (depression of melting temperature and considerable reduction in heat of fusion), using differential scanning calorimeter, followed by delayed diffusion of drug from polymer matrix. Interestingly, polymer nanohybrid exhibits long-term and excellent in vitro antitumor efficacy as opposed to pure drug or drug-intercalated LDH or only drug embedded PCL (conventional drug delivery vehicle) as evident from cell viability and cell adhesion experiments prompting a model depicting greater killing efficiency (cellular uptake) of the delivery vehicle (polymer nanohybrid) controlled by its better cell adhesion as noticed through cellular uptake after tagging of fluorescence rhodamine B separately to drug and LDH. In vivo studies also confirm the sustained release of drug in the bloodstream of albino rats using polymer nanohybrid (novel drug delivery vehicle) along with a healthy liver vis-à-vis burst release using pure drug/drug-intercalated LDHs with considerable damaged liver.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Neoplasias/tratamento farmacológico , Veículos Farmacêuticos/química , Células 3T3 , Animais , Antineoplásicos/química , Disponibilidade Biológica , Engenharia Química , Preparações de Ação Retardada/química , Difusão , Sistemas de Liberação de Medicamentos , Feminino , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hidróxidos/química , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Camundongos , Nanopartículas/química , Polímeros/química , Cloridrato de Raloxifeno/administração & dosagem , Ratos , Difração de Raios X , Compostos de Zinco/química
16.
ACS Biomater Sci Eng ; 4(2): 514-531, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418741

RESUMO

Nanotechnology has acquired an immense recognition in cancer theranostics. Considerable progress has been made in the development of targeted drug delivery system for potent delivery of anticancer drugs to tumor-specific sites. Recently, multifunctional nanomaterials have been explored and used as nanovehicles to carry drug molecules with enhanced therapeutic efficacy. In this present work, graphene oxide quantum dot (GOQD) was conjugated with folic acid functionalized chitosan (FA-CH) to develop a nanocargo (FA-CH-GOQD) for drug delivery in cancer therapy. The synthesized nanomaterials were characterized using Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. Photoluminescence spectroscopy was also employed to characterize the formation of GOQD. To validate the efficacy of FA-CH-GOQD as nanocarriers, doxorubicin (DOX) drug was chosen for encapsulation. The in vitro release pattern of DOX was examined in various pH ranges. The drug release rate in a tumor cell microenvironment at pH 5.5 was found higher than that under a physiological range of pH 6.5 and 7.4. An MTT assay was performed to understand the cytotoxic behavior of GOQD and FA-CH-GOQD/DOX. Cytomorphological micrographs of the A549 cell exhibited the various morphological arrangements subject to apoptosis of the cell. Cellular uptake studies manifested that FA-CH-GOQD could specifically transport DOX within a cancerous cell. Further anticancer efficacy of this nanomaterial was corroborated in a breast cancer cell line and demonstrated through 4',6-diamidino-2-phenylindole dihydrochloride staining micrographs.

17.
Mater Sci Eng C Mater Biol Appl ; 83: 108-114, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208267

RESUMO

Herein, we report the effect of the exfoliated molybdenum disulfide (eMoS2) nanosheets in improving the permeability and anti-fouling properties of the PEI ultra-filtration (UF) membrane using bovine serum albumin (BSA) and humic acid (HA) as model fouling agents. The PEI/eMoS2 nanocomposite membranes were prepared via phase inversion method using three different eMoS2 concentrations (0.5, 1 and 2wt%) designated as PEI-0.5, PEI-1 and PEI-2, respectively. Fourier transform infra-red spectroscopy employed to probe the surface functionalities on the membranes. Contact angle measurement, pure water flux, swelling rate and solute rejection studies confirmed the improved hydrophilicity of the PEI/eMoS2 nanocomposite membranes than the individual entities. Flux recovery ratio (FRR), reversible and irreversible fouling results evidenced the improved fouling resistance of PEI/eMoS2 modified membranes than the individual counterparts. SEM results evidenced that the nanoscale eMoS2 significantly altered the membrane morphology by causing increased porosity and larger macrovoids formation on the surface as well as in the bulk of the membrane. PEI-1 membrane showed an increased pure water flux (52.54Lm-2h-1) and water content (74.8%) whereas lesser contact angle (69.2°) and hydraulic resistance (1.85kPa/Lm-2h-1). Resistance to fouling performance of PEI-1 membrane was evident from the FRR values of 95.3 and 90.2% and rejection values of 94.5 and 92.4% for BSA and HA respectively. PEI-2 membrane agglomerates with eMoS2 and hindered the membrane permeability by blocking the macrovoids in the bulk which restricted the permeation and fouling resistance of the membrane. Amongst various nanocomposite membranes investigated, the PEI-1 membrane exhibited better hydrophilicity and fouling resistance properties due to the availability of the favorable surface and bulk characteristics.


Assuntos
Nanocompostos/química , Soroalbumina Bovina/química , Ultrafiltração/métodos , Animais , Bovinos , Substâncias Húmicas , Membranas Artificiais
18.
Int J Biol Macromol ; 109: 1246-1252, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169944

RESUMO

There is a need for reuse of waste cotton lint (WCL) from the blow room of yarn spinning mills. The drive to use this material for the synthesis of nanocellulose is difficult because of the several purification/pretreatment processes. Here, we developed a combined single bath purification process of WCL and utilized it for the synthesis of nano-crystalline cellulose crystals (NCs) which are valuable nanomaterials with novel properties along with acid recovery for reuse. The micrograph of the synthesized NCs confirmed a network of nano-sized crystalline cellulose crystals having nano ranged diameter of NCs isolated by two processes. The FTIR result established the removal of impurities and hemicelluloses from WCL. The crystallinity index of WCL (∼89.97%) is improved to ∼96% and ∼94% for sulphuric acid and nitric acid synthesized NCs (NC1 and NC2). The crystallite size of WCL, CTWCL, NC1, and NC2 was calculated using XRD and found to be 101.56, 103.54, 98.81, and 95.6nm respectively. The hydrodynamic size (Z-average) (dnm), polydispersity index and zeta potential of NCs was also studied using dynamic light scattering (DLS). The thermal stability of the NC1 is better than that of NC2. These NCs can be used as reinforcing filler/barrier material.


Assuntos
Celulose/química , Fibra de Algodão , Cristalinas/química , Nanoestruturas/química , Celulose/síntese química , Cristalinas/síntese química , Cristalização , Difusão Dinâmica da Luz , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
19.
Int J Biol Macromol ; 102: 258-265, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390828

RESUMO

The effect of gellan gum on the gelation behavior and in-vitro release of a specific drug named pilocarpine hydrochloride from different ophthalmic formulations based on poloxamer 407 is examined. The mixture of 0.3wt% gellan gum and 18wt% poloxamer (PM) solutions show a considerable increase in gel strength in physiological condition. Gel dissolution rate from PM based formulation is significantly decreased due to the addition of gellan gum. FTIR spectra analysis witnesses an interaction in between OH groups of two polymers which accounts for lowering in gelation temperature of PM-gellan gum based formulations. It is also observed from the cryo-SEM study that the pore size of PM gel decreases with an addition of gellan gum and in-vitro release studies indicate that PM-gellan gum based formulation retain drug better than the PM solution alone. Therefore, the developed formulation has the potential to be utilized as an in-situ ophthalmic drug carrier.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Pilocarpina/química , Poloxâmero/química , Polissacarídeos Bacterianos/química , Temperatura , Administração Oftálmica , Química Farmacêutica , Géis , Modelos Moleculares , Conformação Molecular , Pilocarpina/administração & dosagem , Viscosidade
20.
ACS Appl Mater Interfaces ; 8(24): 15778-87, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27253330

RESUMO

A novel hydrophobic membrane-based desiccant fiber (MDF) was developed by loading lithium chloride into hydrophobic hollow fiber membranes. The MDF thus made was then tested for vapor absorption under controlled conditions. Furthermore, an MDF pad, which was made by weaving MDF into a piece of garment, was built into a laboratory vacuum desiccant cooling (VDC) setup, which included the MDF pad as the desiccant layer and a cooling towel saturated with water as the water reservoir, to test the cooling effects at atmospheric pressure and vacuum of 25 in. of Hg. Results indicate that MDF is suitable for applications such as in VDC. Mass and heat transfer of vapor absorption by MDF were also analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...